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Abstract

Motion-activated cameras (‘camera-traps’) have become indispensable for wild-
life monitoring. Data from camera-trap surveys can be used to make inferences
about animal behaviour, space use and population dynamics. Occupancy
modelling is a statistical framework commonly used to analyse camera-trap
data, which estimates species occurrence while accounting for imperfect detec-
tion. Including covariates in models enables the investigation of relationships
between occupancy and the environment. Survey design studies help practi-
tioners decide the number of cameras to deploy, deployment duration and
camera positioning. However, existing assessments have generally assumed con-
stant occupancy and detectability (i.e. no covariates were considered), which is
unrealistic for most real-world scenarios. We investigated the effects of covari-
ates on the relationship between survey effort and the combination of accuracy
and precision (i.e. error) of occupancy models. Camera-trap data for a ‘virtual’
species were simulated as a function of randomly generated, site- and survey-
specific covariates (e.g. habitat type/quality and temperature, respectively). We
then assessed how varying survey design and total effort influenced estimation
error with and without covariate information. Increasing the number of cam-
eras consistently reduced error, while longer deployments were only beneficial
when the covariate influenced occupancy. When both parameters were affected
by covariates, omitting effects on detectability had limited impact on model
performance. However, failing to account for effects on occupancy significantly
increased error, and none of the predefined thresholds (root mean squared
error = 0.15, 0.10 and 0.075) were achievable, even with the maximum survey
effort of 9000 camera-days. These results suggest that increasing survey effort is
unlikely to improve model performance unless site-level conditions are appro-
priately modelled. Thus, robust study design should consider total effort and
the monitoring of covariates across sites to ensure efficient use of time and
financial resources.
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Covariates influence camera-trap survey design

Introduction

Monitoring the distribution of species and tracking
changes over time is a fundamental component of biodi-
versity conservation and ecological research (Burton
et al., 2015; Kays et al., 2015). It provides essential infor-
mation for assessing the local extinction risk of vulnerable
species, understanding human-wildlife conflicts and fore-
casting the effects of global climate change on wildlife
populations (Dirzo et al., 2014; Johnson et al., 2017). Col-
lecting data on the behaviour and space use of
wide-ranging terrestrial animals can be logistically chal-
lenging, particularly for rare or cryptic species, and may
require investment of sizeable financial and human
resources (Festa-Bianchet et al., 2017; Lindenmayer &
Likens, 2010). Motion-activated digital cameras (‘camera-
traps’) are one of several technologies, including Global
Positioning System (GPS) devices and satellite imagery,
that have advanced rapidly in recent years and provided
new opportunities for scientists to monitor animals
remotely over large geographic areas (Pimm et al., 2015).

Camera traps offer advantages over traditional moni-
toring techniques (e.g. direct counts and track surveys) as
the data collection process is largely non-invasive and
requires relatively less surveyor effort (Blount et al., 2021;
Trolliet et al., 2014). They have been used to investigate a
wide range of biological questions relating to population
density (Parsons et al., 2017; Rowcliffe et al., 2008), spe-
cies interactions (Gorczynski et al., 2022), temporal activ-
ity (Frey et al., 2017; Lazzeri et al., 2022) and population
dynamics (Kasada et al., 2022; Trolliet et al., 2014). The
reliability and utility of camera trap surveys depend on a
robust study design accounting for key factors, such as
animal movement and habitat preference, the influence of
attractants (e.g. scent lures), as well as environmental
conditions (e.g. habitat type) that may influence detection
probability (Burton et al., 2015; Kays et al., 2021). A
well-designed study ensures the collection of high-quality,
relevant data necessary to meet research objectives (Mac-
Kenzie et al., 2017).

Occupancy modelling is a widely used framework for
analysing camera-trap data that accounts for two factors:
(1) species occupancy (presence/absence) and (2) detec-
tion probability (i.e. the probability of recording the spe-
cies when it is present, Burton et al., 2015; MacKenzie
et al., 2017). Since detection probability is often less than
one, failing to account for it can bias estimates. Occu-
pancy models correct for this by using repeated surveys
across multiple sites to estimate detection probability and
improve accuracy (Mackenzie et al., 2002, 2017). One of
the key benefits of this framework is the potential to
model each probability as a function of covariates that
may be site-specific (e.g. habitat type, patch size and
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forage quality) and/or survey-specific (e.g. temperature
and moon phase, Brubaker et al, 2014, Wevers
et al., 2021). Incorporating covariates will generally
improve the biological realism of estimates, as assuming
equal occupancy and detectability across sites and survey
days is unlikely to be reasonable (Lahoz-Monfort
et al., 2014; MacKenzie et al., 2017). Furthermore, quanti-
fying how occupancy probability and detectability vary
with environmental characteristics is often the primary
research focus. For example, predator—prey interactions
(Widodo et al, 2022), habitat use (Lamichhane
et al.,, 2020) and population viability (Farr et al., 2022)
have been explored using occupancy—covariate relation-
ships. These studies support conservation practitioners in
directing their efforts towards landscape features crucial
to the focal species (Broekhuis et al., 2022; Calderén
et al., 2022).

Evaluating survey design by assessing the reliability and
inference of occupancy estimates is essential to inform
decisions on the number of cameras, duration and loca-
tion of deployment. Increasing survey effort (i.e. camera
sites and survey days) generally increases the accuracy
and precision (i.e. reduces error) of occupancy estimates.
However, optimal survey strategies may depend on char-
acteristics of the target species. For example, error is most
efficiently reduced for rare species that are easy to detect
by increasing the number of camera sites, while for spe-
cies that are difficult to detect but spatially common,
error can be minimized more effectively by increasing
survey days (Chatterjee et al., 2021; Kays et al., 2020;
Mackenzie & Royle, 2005; Shannon et al, 2014).
Camera-trap surveys are often constrained by logistical
issues, including equipment costs, camera maintenance,
site access and data storage. Studies on survey optimiza-
tion, therefore, provide useful guidance on the relative
costs and benefits of alternative camera deployment strat-
egies (Galvez et al, 2016; Kays et al, 2020; Shannon
et al., 2014).

To date, these assessments have assumed that occu-
pancy and detection remain constant across sites and sur-
vey days (i.e. no covariates were used in the analyses),
which is seldom the case in real-world scenarios (Mac-
kenzie et al., 2002). Consequently, the extent to which
covariates affect trade-offs in effort allocation between
sites and surveys remains uncertain. Optimal survey
design may depend on both the magnitude of covariate
effects and whether they are site- or survey-specific, as
these factors determine the range and quantity of covari-
ate data available for modelling. Indeed, forecasting the
strength and direction of covariate relationships with
occupancy and detection can play an important role in
designing efficient surveys. However, in many cases, there
is limited a priori knowledge of whether a given covariate
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primarily affects occupancy and/or detection. Therefore,
investigating the relative costs of misidentifying covariate
relationships in terms of estimation bias and wasted sur-
vey effort can provide useful information for guiding
camera-trap survey design.

Assessing alternative survey designs with empirical data
is challenging because differences in a wide range of con-
ditions (e.g. habitat, weather and elevation) may exist
between study sites, and their effects are likely to vary
across taxa (Chatterjee et al., 2021; Kays et al., 2020; Mac-
kenzie & Royle, 2005). Computer simulations are well
suited to explore the effects of covariates on survey design
trade-offs, as covariate properties (e.g. spatial extent and
strength of effects) can be manipulated to facilitate the
investigation (Lotterhos et al., 2022). Although simulation
tools are available to explore study design (GENPRES:
Bailey et al., 2007; SODA: Guillera-Arroita et al., 2010),
the functionality of these programs is currently limited to
comparing occupancy between predefined groups of sites
(i.e. investigating the effect of a categorical covariate
only).

This study aimed to investigate how covariates influ-
ence both accuracy and precision (i.e. error) of occupancy
models in relation to survey effort. Using simulated detec-
tion histories of a virtual species, we assessed the effects
of site- and survey-specific covariates on occupancy and
detectability. We evaluated how survey design factors
(camera number, deployment duration, positioning and
covariate effect magnitude) impact parameter error, both
with and without covariate inclusion in occupancy
models. We hypothesised that optimal survey design
would depend on the type (i.e. site- or survey-specific)
and magnitude of covariate effects, as well as whether
they primarily influenced occupancy or detectability.
Additionally, we expected that, for the same level of sur-
vey effort, models correctly incorporating influential cov-
ariates would yield lower error than those omitting them.
Based on our findings, we offer broad recommendations
for designing camera-trap surveys to estimate species
occupancy when covariate effects are expected and high-
light the potential costs of suboptimal designs when such
effects are unknown.

Materials and Methods

The methods are an extension of the simulation approach
used by Shannon et al. (2014). Simulations were parame-
terised to investigate 2700 different scenarios that varied
by number of cameras (sites: N=10, 30, 50, 70, 90),
number of survey days (occasions: S=20, 40, 60, 80,
100), proportion of cameras positioned in habitat patches
(Prop=0, 0.2, 0.4, 0.6, 0.8, 1) and type of covariate
affecting detectability (EffectType(,) = site- or survey-
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specific) as well as the magnitude of covariate effects on
occupancy (Magnitudeayy=none, weak or strong) and
detectability (Magnitude,) = none, weak or strong).

The site-specific covariate was simulated to mimic a
patchily distributed resource (e.g. woodland, water source
and wetland) surrounded by a matrix of alternative,
lower-quality habitat land cover types. Prop represents the
proportion of camera sites (N') located within these habi-
tat patches and reflects real-world scenarios, where
observed heterogeneity in a covariate may arise from vari-
ation in its spatial extent, distribution or the camera
deployment strategy used (Fig. 1). For example, uniform
sampling is often used when the objective is to estimate
habitat preferences (e.g. Estevo et al., 2017). Alternatively,
non-uniform sampling may be used when assessing the
relationship between occupancy and a characteristic of
the habitat patch (e.g. quality, salinity and plant species
richness) is the aim of the study (e.g. Hansen

Uniform Non-uniform

Scenario A
Prop=0

Scenario B
Prop =0.5

Scenario C
Prop=1

e Camera Focal
quality

Figure 1. Camera data collection scenarios are represented by
varying the proportion of camera sites (N) located in patches of a
given habitat type (Prop) and quality. Scenario A: the habitat is either
not present or deliberately not sampled. Scenario B: 50% of cameras
are in habitat patches, either by design or distribution of the habitat.
Scenario C: 100% of cameras are in patches of the habitat type,
either by design or because there is contiguous habitat cover.
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et al., 2020), or there is a need to stratify sampling across
habitat types (Bailey et al., 2007; Kays et al., 2020; Mac-
Kenzie et al, 2017). The survey-specific covariate was
simulated to represent an environmental or observational
factor that varies across survey occasions but not camera
sites, such as temperature, Julian day or moon phase.

Simulated detection histories

A total of 500 sets of detection histories were created for
each combination of N (5 levels), S (5 levels), Prop (6
levels), EffectTypey (2 levels), Magnitudeyyy (3 levels)
and Magnitude,y) (3 levels, 5x5x6x2x3x3=2700 in
total). Detection histories consisted of N x S events,
where each ith camera site was occupied or not (y;) from
i=1, ..., N, following a Bernoulli process with probabil-
ity w;. At occupied sites, it was then determined if the
species was detected or not for each occasion from j=1,
..., S following a Bernoulli process with probability p; or
pj» when EffectType(,) was site- or survey-specific, respec-
tively (Shannon et al., 2014).

Occupancy () was modelled as a function of a site-
specific covariate, while detection probability (p) was
modelled as a function of either a site- or survey-specific
covariate, depending on EffectType(,) (Mackenzie & Bai-
ley, 2004). In each simulation, sites were considered to be
in patches of the focal habitat (n = Nx Prop) or the sur-
rounding matrix (n=Nx (1-Prop)). For each camera site
in the habitat patches, a random value between 0 and 10
was generated from a uniform distribution to represent a
characteristic of the patch (e.g. habitat quality). Camera
sites in the matrix were assigned habitat quality values of
0. The probability y was calculated using the logistic
model (Equation 1) with intercept and slope terms shown
in Table 1 (Mackenzie et al., 2002):

logit(wy;) = Intercept + (Slope x Covariate;) (1)
where Covariate is the habitat quality value (0-10) gener-

ated from the uniform distribution. The probability y
was constant (0.4) at matrix sites and increased with
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increasing quality of the habitat patch for the camera site
it contains, representing a mechanism whereby a species
uses a range of habitats but prefers higher quality patches
of a given type (Fig. 2). The same equation structure was
used for modelling detection probability (Equation 1).
For scenarios where EffectType,) was site-specific, detect-
ability p was modelled as a function of habitat type and
was assumed to be lower in the matrix (p=0.05, Table 1),
representing a scenario where the species is more detect-
able in habitat patches (p=0.3, ‘patch sites’ hereafter,
Table 1), possibly because activity is higher, or game trails
are easier to identify. For scenarios where EffectType,
was survey-specific, covariate values for p were simulated
using a similar procedure as for y. A random value
between 0 and 10 was generated for each survey day from
a uniform distribution to represent a dynamic environ-
mental variable (e.g. temperature) and a survey-specific p
was estimated using the logistic model (Equation 1,
Table 1, Fig. 2).

The intercept and slope terms were calculated to repre-
sent a species with low-to-moderate occupancy and low
detectability when covariate values were zero (e.g. in
matrix sites or temperature of 0). Occupancy and detect-
ability increased to moderate or high levels depending on
the strength of the covariate effects, with weak effects
leading to moderate increases and strong effects resulting
in high occupancy and detectability. The parameter values
used to create detection histories of the virtual species are
representative of the range of values observed in empirical
studies of terrestrial mammals (Chatterjee et al., 2021;
Kays et al., 2020; Shannon et al., 2014).

Occupancy modelling and error estimation

Simulated detection histories were analysed using
single-season single-species occupancy models (Mackenzie
et al., 2002) in the ‘RPresence’ package, which imple-
ments the statistical models available in the software
program PRESENCE (www.mbrpwrc.usgs.gov/software/
presence.shtml) in R (R Core Development Team, 2024).

Table 1. Intercept and slope terms used to model occupancy () and detection probabilities (p) as a function of a randomly generated site- or

survey-specific covariate (Equation 1).

Range of values

Parameter p Effect type Effect magnitude Intercept Slope Matrix sites Patch sites
7 Weak —-0.41 0.13 0.4 0.4-0.7
W Strong —-0.41 0.26 0.4 0.4-0.99
p Site-specific Weak -2.94 0.75 0.05 0.1

p Site-specific Strong -2.94 2.1 0.05 0.3

p Survey-specific Weak -2.94 0.07 0.05-0.1 0.05-0.1
P Survey-specific Strong —-2.94 0.5 0.05-0.3 0.05-0.3
4 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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(A) 40 (B)
0.8

0.6

0.41

Occupancy (y)
Detectability (p)

0.2

0.0

Habitat quality

0.30

0.25

0.20

0.15

0.05

0.00
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Effect magnitude

— Strong
— Weak

0 2 4 6 8 10

Temperature

Figure 2. Relationship between (A) occupancy (w) and habitat quality and (B) detectability (p, when EffectType, = survey-specific) and
temperature used to simulate detection histories of a virtual species. Habitat quality and temperature values were both randomly generated from
a uniform distribution. The dashed line indicates y for matrix sites (0.4), which were assigned habitat values of 0.

It was assumed (i) sites were closed to changes in occu-
pancy, (ii) detection of species and detection histories at
each site were independent and (iii) species were correctly
identified (i.e. no false positives, MacKenzie et al., 2017).

For each scenario (i.e. combination of N, S, Prop,
EffectType(,), Magnitudeqyy and Magnitude,) from k=1,
.. 2700, we fitted four models: (1) ‘Constant’ w(.)p(.),
where y and p were held constant, (2) ‘Occupancy-only’:
w(habitat quality)p(.), where y varied with habitat
quality while p was held constant, (3) ‘Detection-only’:
w(.)p(temperature/habitat type) where w was held con-
stant and p varied with temperature or habitat type and
(4) an ‘Occupancy and Detection’ model: w(habitat
quality)p(temperature/habitat type), where both parame-
ters varied in relation to covariates. Error was calculated
using root mean squared error (RMSE), which is a
measure of both accuracy and precision:

RMSE: =/ 2 (i) | @

where k is the scenario and w and w are the
model-estimated and true values for occupancy at site i,
respectively. To assess the effect of the covariate on the
optimal survey design, three different RMSE target values
(0.15, 0.10 and 0.075) were selected to represent differing
levels of error. Consistent with the analyses conducted by
Shannon et al. (2014), the number of occasions (S) and
number of cameras (N) were weighted equally. The opti-
mal survey design was estimated as the minimum survey
effort (N x S) required to estimate occupancy to a
desired level of error. Finally, to evaluate the relative pen-
alty for failing to account for covariate effects, we calcu-
lated the difference in error between optimal models (e.g.

models that omitted one or more influential covariates
(ARMSE = RMSEG piimar~RMSEsub-optimal):  The ARMSE
was calculated in relation to total survey effort and effect
magnitude, where negative values indicate worse model
performance (i.e. an increase in error) due to covariate
omission.

It should be noted that only outputs from valid models
were included in the results. For a model to be valid it
had to meet the following criteria: (1) converge to a min-
imum of three significant digits (provided in the RPre-
sence model output), (2) no variance—covariance (VC)
warnings, (3) naive occupancy >0 and <1 and (4)
estimates <=6.906755 and > = —6.906755, which rep-
resents a maximum of a 0.999 change in the estimate of a
parameter (y or p) for a 1 standard deviation unit change
in the covariate (applies to covariate models only,
Tables S1 and S2).

Results

Increasing the number of cameras consistently reduced
the root mean squared error (RMSE) of occupancy ()
estimates across all simulated scenarios (Fig. 3). A key
finding, however, was that increasing the number of sur-
vey days only reduced error when occupancy was influ-
enced by a covariate and had minimal impact when
covariates affected detectability (Table 2, Fig. 3). Greater
total survey effort (sites and surveys) was needed when
covariate effects on occupancy were weak, and a larger
number of sites was required when detectability was
weakly influenced by a survey-specific covariate. In con-
trast, effect magnitude had minimal influence when the
detectability covariate was site-specific (Table 2).

an Occupancy-only model applied when the covariate Omitting the occupancy covariate substantially
affected occupancy and not detection) and sub-optimal decreased model performance (i.e. greater error),
© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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Parameter influenced by the covariate
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p (Site-specific)

p (Survey-specific)

0.5
0.4
0.31
0.2
0.1+
0.0+

Neap

0.5
0.4
0.3
0.2
0.1 e sem—

RMSE (y)

0.0+

Buousyg

20 40 60 80 100

Cameras

Number of days

10 — 30 — 50 — 70 — 90

apnjiuBew jo9)3

Figure 3. Root mean squared error (RMSE) for estimates of occupancy (y) in relation to survey effort (number of cameras and number of days of
deployment) and covariate effects that varied by the parameter affected (occupancy or detectability, p), as well as effect magnitude and the type
of covariate affecting p (site- or survey-specific). Results shown are for scenarios where an intermediate proportion of camera sites were in habitat

patches (Prop = 0.6).

Table 2. Optimal survey design (number of cameras Nx number of survey days S) for estimating occupancy with a minimum level of precision
(root mean squared error, RMSE) of 0.15, 0.10 and 0.075 under different scenarios of covariate effects on either occupancy (y) or detectability

(p)-
RMSE =0. 15 RMSE =0.1 RMSE =0.075

Parameter influenced by the covariate Effect magnitude NxS Total NxS Total NxS Total
None (Constant model) — 30 x40 1200 30x 60 1800 70 x 40 2800
W Weak 50 x 40 2000 50 x 80 4000 90 x 100 9000

Strong 50 x 20 1000 70 x 40 2800 90 x 60 5400
p (Site-specific) Weak 30x20 600 50 x 20 1000 90 x 20 1800

Strong 30x20 600 50 % 20 1000 70 x 20 1400
p (Survey-specific) Weak 50x 20 1000 50 20 1000 90 x 20 1800

Strong 30x20 600 30x 20 600 50 x 20 1000

Note: We assume equal costs of cameras versus survey days (as per Shannon et al., 2014). Results are shown for models that correctly incorpo-
rated covariates when necessary and for scenarios where an intermediate proportion of camera sites were in habitat patches (Prop = 0.6).

particularly when the effect magnitude was strong, and an
intermediate proportion of cameras were in habitat
patches (Figs 4 and 5). Furthermore, in scenarios where
both occupancy and detectability were influenced by

covariates, models that did not account for occupancy
effects achieved none of the pre-defined error thresholds,
even with the maximum survey effort (9000 camera-days,
Table 3). Conversely, omitting the detectability covariate

6 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Figure 4. Difference in root mean squared error for estimates of occupancy (w) between optimal models and sub-optimal models that omitted
one or more influential covariates (ARMSE = RMSEqptima—RMSEs b-optimal) in relation to total survey effort (Camera-days: number of cameras x
number of days of deployment) and effect magnitude. Negative values below the dashed horizontal line indicate worse performance (i.e. more
error associated with sub-optimal models). Results shown are for scenarios where an intermediate proportion of camera sites were in habitat
patches (Prop = 0.6) and EffectTypey,) = site-specific; for survey-specific results see Figure S2.

had little impact on model performance, regardless of  omitting covariates occasionally improved performance at
effect magnitude or whether the covariate was site- or  lower levels of survey effort, most likely because of uncer-

survey-specific (Fig. 4, Table 3). In scenarios where tainty in estimating effects (i.e. regression coefficients,
occupancy covariates were absent or weakly influential, Fig. S1).
© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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Impact of covariate omission - Occupancy only
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Figure 5. Difference in root mean squared error for estimates of occupancy (w) between optimal ‘Occupancy-only’ models and ‘Constant’ models
that omitted the occupancy covariate (ARMSE = RMSEqccupancy-only—RMSEconstant) in relation to survey effort (number of cameras and number of
days of deployment), effect magnitude and the proportion of camera sites in habitat patches. Negative values below the dashed horizontal line
indicate worse performance (i.e. more error associated with the Constant model).

Table 3. Impact of covariate omission when occupancy () and detectability (p) are both strongly influenced by covariates in terms of optimal sur-
vey design (number of cameras N x number of survey days S) for estimating occupancy with a minimum level of precision (root mean squared
error, RMSE) of 0.15, 0.10 and 0.075.

Covariates omitted

w and p 7 p None (Correct)
Minimum precision threshold (RMSE) NxS Total NxS Total NxS Total NxS Total
p (Site-specific)
0.15 F F F F 30x%20 1000 30 x 20 600
0.1 F F F F 50 x 40 2800 70 x 20 1400
0.075 F F F F 90 x40 5400 90 x 40 3600
p (Survey-specific)
0.15 F F F F 30x20 600 30 x 20 600
0.1 F F F F 50 % 20 1000 50 x 20 1000
0.075 F F F F 90 x 20 1800 90 x 20 1800

Note: We assume equal costs of cameras versus survey days (as per Shannon et al., 2014). Results are shown for scenarios where an intermediate
proportion of camera sites were in habitat patches (Prop = 0.6). ‘F' indicates failure to achieve the precision threshold with the maximum possible
survey effort (9000 camera-days).

8 © 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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Discussion

We used a simulation approach to assess the effects of
covariates on the precision and accuracy (i.e. error) of
occupancy models in relation to camera-trap survey
effort. The results showed that increasing the number of
cameras consistently decreased error. However, the rela-
tive benefit of longer deployments and the total survey
effort required to achieve precision targets depended on
which model parameter (occupancy or detectability) was
influenced by the covariate and the magnitude of the
effects. Furthermore, we found that increased survey
effort only reduced error when the effects of
occupancy-related covariates were properly accounted for
in the model. In contrast, failing to include covariates
influencing detectability had minimal impact. Our find-
ings highlight the importance of prioritising biologically
relevant covariates during survey design to ensure efficient
monitoring and precise occupancy estimation.

The benefits of maximising the number of cameras and
accounting for covariate effects on occupancy were clear
across all survey design scenarios. Covariates are used to
satisfy the assumption that heterogeneity in occupancy
and detection probabilities across sites and surveys is
accounted for in the modelling of each parameter (Mac-
kenzie et al., 2002, 2017). In scenarios where a spatial
covariate (e.g. habitat type or quality) is the source of
heterogeneity, deploying more cameras expands the range
and coverage of data available for modelling. This, in
turn, improves the estimation of effects and the efficacy
of models to discriminate between competing hypotheses
(e.g. to assess habitat preferences, Bailey et al., 2007;
Guillera-Arroita & Lahoz-Monfort, 2012; MacKenzie
et al., 2017). Importantly, our results suggest that unless
site-level heterogeneity is appropriately quantified and
modelled using covariates, increasing survey effort is
unlikely to provide any benefit for model performance.
Identifying and accounting for potentially influential cov-
ariates at the earliest stages of study design is therefore an
efficient way to improve estimation precision and prevent
the wasteful use of additional cameras or extended
deployments.

In real-world scenarios, occupancy and detectability
can be influenced by a variety of spatially variable factors,
the effects of which may be unknown. Furthermore, envi-
ronmental features may vary at multiple hierarchical
levels, as exemplified by the habitat variable used in our
study, which varied by type (e.g. forest and grassland)
and quality (low-high). Our findings show that, while
standardising site selection (e.g. by selecting all sites of
the same habitat type, represented by Prop=1 in our
simulations) can eliminate one source of spatial heteroge-
neity, assuming constant occupancy may be inappropriate

Covariates influence camera-trap survey design

due to the unmodelled effects of additional factors. This
underscores the need to consider the study’s primary
objectives when selecting sites relative to covariate gradi-
ents. Simple random sampling is well-suited to identifying
habitat preferences across broad habitat types (e.g. Donini
et al., 2025; Nagy-Reis et al., 2017). However, for habitat
specialist ~ species—whose  preferences are known
a-priori—targeting these habitats and distributing cameras
evenly across the value-ranges of secondary factors such
as quality or forage availability (e.g. Bitani et al.,, 2023;
Bowler et al., 2017) may provide more useful data. Com-
bining these strategies can be useful for surveying rare or
understudied species, where limited prior knowledge of
habitat use is available to inform site selection (e.g.
Khwaja et al., 2019). Initially, cameras can be deployed in
a uniform grid followed by redeployment to preferred
habitats (e.g. van Berkel et al., 2022).

When the source of heterogeneity is a temporally
dynamic factor (e.g. moon phase or temperature), it may
seem intuitive that increasing deployment duration would
benefit model performance, since longer surveys allow for
the observation of a wider range of covariate values to
estimate effects. However, our results do not support this
hypothesis. Increasing deployment length only reduced
error when detectability was held constant (i.e. not influ-
enced by the covariate). Longer camera deployments help
distinguish whether non-detection at a given site is due
to true absence (i.e. the site is unoccupied) or low detect-
ability by increasing the cumulative detection probability
(i.e. the probability of detecting the species at least once
over the entire survey period, p*, for the equation for-
mula see Fig. S3 and Shannon et al, 2014). As p*
approaches a value of 1, detectability ceases to influence
the occupancy estimate and additional surveys become
redundant. In the absence of covariate effects, the baseline
detection probability (p =0.05) used in our study
resulted in a p* that ranged from 0.65 for the shortest
deployment (S =20days), to 0.98 for deployments of
80 days or longer. The simulated covariate increased the
average detection probability (i.e. mean p across sites and
surveys) from the 0.05 baseline to a minimum of 0.08
and 0.18 for weak and strong effects, respectively
(Fig. S3). These values for p correspond to p* estimates of
0.81 and 0.98 for the shortest deployment, which only
marginally increased with additional survey days
(Fig. S3). This likely explains why extending deployment
duration had little effect on model performance when
detectability was influenced by covariates, and why
excluding these covariates had substantially less of an
impact than omitting those affecting occupancy.

In situations where baseline detectability is very low
(i.e. p < 0.05), detectability is strongly reduced by envi-
ronmental factors, or deployments are less than 20 days,

© 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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deployment duration—and the impact of omitting detect-
ability covariates—may exert a stronger influence on esti-
mation error (Wright et al, 2019). For example,
occupancy studies of herpetofauna typically rely on
non-camera-based survey methods that are often logisti-
cally limited to very low numbers (<10) of repetitions.
In these circumstances, incorporating covariates for
detectability may be equally as important as accounting
for factors influencing occupancy (Baumgardt et al., 2021;
Oropeza-Sanchez et al., 2021). Nevertheless, a 20-day
deployment reflects the shorter end of durations typically
used in camera-based occupancy studies (Kays
et al., 2020). Furthermore, the values for baseline detect-
ability and effect magnitude in our simulations are repre-
sentative of those observed in empirical studies
(Chatterjee et al., 2021; Kays et al., 2020; Shannon
et al., 2014) and the findings should therefore be applica-
ble to a wide range of taxa and situations where
camera-traps are used to study patterns of site occupancy.

For convenience, we parameterised our simulations so
that detectability was entirely site- or survey-specific.
However, there are many real-world cases where factors
influencing detectability vary both spatially and tempo-
rally. For example, temperature may fluctuate day-to-day
but also across sites at different elevations. In such condi-
tions, longer-duration deployments are likely to be benefi-
cial due to the additional spatial heterogeneity in
detectability. This could be explored by adapting our code
(Data S1 and S2) to simulate a covariate that is both site-
and survey-specific. Our analyses could also be expanded
to explore how seasonal variation in occupancy/
detectability influences survey optimization. For example,
if a species is more active in the summer than in the win-
ter because environmental conditions are more favour-
able, detection probability may be higher during the
summer, meaning fewer repeated surveys would be
required to achieve the same level of estimation accura-
cy/precision. Furthermore, camera-traps are often used to
monitor multiple species, each of which may respond dif-
ferently to environmental factors. Using multi-species
and/or multi-season models (see MacKenzie et al., 2017)
within our simulation framework may be useful to evalu-
ate survey optimisation under these more complex
conditions.

As with the design of any ecological study, the potential
benefits of a given survey strategy must be weighed
against the practical costs of implementation. When cal-
culating the minimum survey effort required to achieve
error below a target value, the number of cameras and
number of survey days were weighted equally in the pre-
sent study. In real-world scenarios, each survey compo-
nent may have different human and financial costs that
need to be considered to find an efficient solution within

O. Barton et al.

the logistical constraints of a study. There are also costs
associated with collecting covariate data, which can vary
greatly depending on the type of data required, as well as
the ecological context and scale of the study.
Remotely-sensed environmental data have been collected
for many countries worldwide and are free to access from
sources such as the European Space Agency
(https://worldcover2020.esa.int/) and Copernicus Global
Land Service (https://land.copernicus.eu/global/products/).
However, data on finer-scale (e.g. habitat structure) or
dynamic (e.g. prey availability) covariates may be more
challenging and expensive to collect. Real-world costs
have been evaluated in previous assessments of
camera-trap surveys (Galvez et al., 2016; Guillera-Arroita
et al, 2010; Shannon et al., 2014), which could be
expanded to include the collection of covariate data.

Conclusions

Our study demonstrates the fundamental importance of
considering covariate effects on occupancy and detection
probabilities in camera-trap survey design. While the
results show that extended camera deployments may par-
tially compensate for unmodelled detectability covariates,
the impact of neglecting effects on occupancy is unlikely
to be mitigated by any level of increased survey effort.
Therefore, we recommend that researchers clearly define
study objectives and prioritise the identification of key
covariates early in the design process. When spatial het-
erogeneity is a concern, increasing camera coverage across
covariate gradients is likely to enhance model perfor-
mance. Furthermore, characteristics (e.g. quality) of an
apparently homogenous covariate (e.g. habitat type) may
vary spatially and should be accounted for where possible.
In contrast, temporal covariates may not justify longer-
duration deployments unless the species is especially rare
and/or the effects on detectability are negative.

Although simulation studies provide useful theoretical
guidance, it will be important to validate our results with
empirical data. Modelling covariates adds a dimension of
complexity that makes validation with empirical data very
challenging as a wide range of factors may influence the
observed relationship between covariates and occupancy/
detectability, including spatial and temporal scale,
ecological context, community composition and species
abundance (Heino & Tolonen, 2018; Hofmeester
et al, 2019; Mordn-Lopez et al., 2022; Steenweg
et al., 2018). Initiatives such as Wildlife Insights powered
by Google (Thau et al., 2019), Snapshot (Europe, USA,
Japan and Brazil, https://snapshot-global.org/) and the
eMammal repository (McShea et al., 2016) have collated
camera-trap data for a wide range of species from around
the world. These large, centralised datasets may facilitate
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appropriately detailed analyses, from which the results
may be transposed to a range of species, ecological con-
texts and survey scenarios.
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Table S1. Mean proportion of invalid models (n
invalid/number of detection histories (500)) across all sce-
narios of number of cameras, number of days, Prop,
EffectType(,), Magnitude,s; and Magnitude,) for optimal
models, where covariates were incorporated correctly (e.g.
an Occupancy-only model applied when the covariate
influenced occupancy y and not detectability p). For a
model to be valid it had to meet the following criteria:
(1) converge to a minimum of 3 significant digits, (2) no
variance—covariance (VC) warnings, (3) naive occupancy
>0 and <1 and (4) coefficient estimates <= 6.906755
and > = —6.906755, which represents a maximum of a
0.999 change in the estimate of a parameter (y or p) for
a 1 standard deviation unit change in the covariate.

Table S2. Mean proportion of invalid models (n
invalid/number of detection histories (500) across all sce-
narios of number of cameras, number of days, Prop,
EffectType,), Magnitude,;, and Magnitude,)) for sub-
optimal models, where one or more influential covariates
were omitted. For a model to be valid it had to meet the
following criteria: (1) converge to a minimum of 3 signif-
icant digits, (2) no variance—covariance (VC) warnings,
(3) naive occupancy >0 and <1 and (4) coefficient
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estimates <=6.906755 and > = —6.906755, which rep-
resents a maximum of a 0.999 change in the estimate of a
parameter (y or p) for a 1 standard deviation unit change
in the covariate.

Figure S1. Mean standard error of regression coefficients
estimates () describing the relationship between a
randomly-generated site-specific covariate (habitat qual-
ity) and occupancy (y) from optimal ‘Occupancy-only’
models (i.e. occupancy covariates were used and detect-
ability was constant) in relation to survey effort (number
of cameras and number of days of deployment), effect
magnitude and the proportion of camera sites in habitat
patches. Means were estimated from 500 replicate models.
Figure S2. Difference in root mean squared error for esti-
mates of occupancy (w) between correctly-specified
models and alternative models that omitted one or more

O. Barton et al.

deployment) and effect magnitude. Negative values below
the dashed horizontal line indicate worse performance
(i.e. more error associated with alternative models).
Results shown are for scenarios where an intermediate
proportion of camera sites were in habitat patches
(Prop =0.6) and p.EffectType = survey-specific.
Figure = S3.  Cumulative  detection  probability
p* =1—(1—p)®, where p is detection probability and § is
the number of survey days, Shannon et al. (2014) in rela-
tion to the number of survey days used for camera
deployment, type of covariate affecting detectability
(EffectTypey) and  the magnitude of  effects
(Magnitude,)). The solid black line represents the
p=0.05 baseline detection probability. Results shown are
for scenarios where an intermediate proportion of camera
sites were in habitat patches (Prop = 0.6).

influential covariates (ARMSE = RMSE g rect - Data S1.

RMSE jiernative) 10 relation to total survey effort (Camera- Data S2.

days: number of cameras X number of days of
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