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Abstract

Motion-activated cameras (‘camera-traps’) have become indispensable for wild-

life monitoring. Data from camera-trap surveys can be used to make inferences

about animal behaviour, space use and population dynamics. Occupancy

modelling is a statistical framework commonly used to analyse camera-trap

data, which estimates species occurrence while accounting for imperfect detec-

tion. Including covariates in models enables the investigation of relationships

between occupancy and the environment. Survey design studies help practi-

tioners decide the number of cameras to deploy, deployment duration and

camera positioning. However, existing assessments have generally assumed con-

stant occupancy and detectability (i.e. no covariates were considered), which is

unrealistic for most real-world scenarios. We investigated the effects of covari-

ates on the relationship between survey effort and the combination of accuracy

and precision (i.e. error) of occupancy models. Camera-trap data for a ‘virtual’

species were simulated as a function of randomly generated, site- and survey-

specific covariates (e.g. habitat type/quality and temperature, respectively). We

then assessed how varying survey design and total effort influenced estimation

error with and without covariate information. Increasing the number of cam-

eras consistently reduced error, while longer deployments were only beneficial

when the covariate influenced occupancy. When both parameters were affected

by covariates, omitting effects on detectability had limited impact on model

performance. However, failing to account for effects on occupancy significantly

increased error, and none of the predefined thresholds (root mean squared

error= 0.15, 0.10 and 0.075) were achievable, even with the maximum survey

effort of 9000 camera-days. These results suggest that increasing survey effort is

unlikely to improve model performance unless site-level conditions are appro-

priately modelled. Thus, robust study design should consider total effort and

the monitoring of covariates across sites to ensure efficient use of time and

financial resources.
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Introduction

Monitoring the distribution of species and tracking

changes over time is a fundamental component of biodi-

versity conservation and ecological research (Burton

et al., 2015; Kays et al., 2015). It provides essential infor-

mation for assessing the local extinction risk of vulnerable

species, understanding human-wildlife conflicts and fore-

casting the effects of global climate change on wildlife

populations (Dirzo et al., 2014; Johnson et al., 2017). Col-

lecting data on the behaviour and space use of

wide-ranging terrestrial animals can be logistically chal-

lenging, particularly for rare or cryptic species, and may

require investment of sizeable financial and human

resources (Festa-Bianchet et al., 2017; Lindenmayer &

Likens, 2010). Motion-activated digital cameras (‘camera-

traps’) are one of several technologies, including Global

Positioning System (GPS) devices and satellite imagery,

that have advanced rapidly in recent years and provided

new opportunities for scientists to monitor animals

remotely over large geographic areas (Pimm et al., 2015).

Camera traps offer advantages over traditional moni-

toring techniques (e.g. direct counts and track surveys) as

the data collection process is largely non-invasive and

requires relatively less surveyor effort (Blount et al., 2021;

Trolliet et al., 2014). They have been used to investigate a

wide range of biological questions relating to population

density (Parsons et al., 2017; Rowcliffe et al., 2008), spe-

cies interactions (Gorczynski et al., 2022), temporal activ-

ity (Frey et al., 2017; Lazzeri et al., 2022) and population

dynamics (Kasada et al., 2022; Trolliet et al., 2014). The

reliability and utility of camera trap surveys depend on a

robust study design accounting for key factors, such as

animal movement and habitat preference, the influence of

attractants (e.g. scent lures), as well as environmental

conditions (e.g. habitat type) that may influence detection

probability (Burton et al., 2015; Kays et al., 2021). A

well-designed study ensures the collection of high-quality,

relevant data necessary to meet research objectives (Mac-

Kenzie et al., 2017).

Occupancy modelling is a widely used framework for

analysing camera-trap data that accounts for two factors:

(1) species occupancy (presence/absence) and (2) detec-

tion probability (i.e. the probability of recording the spe-

cies when it is present, Burton et al., 2015; MacKenzie

et al., 2017). Since detection probability is often less than

one, failing to account for it can bias estimates. Occu-

pancy models correct for this by using repeated surveys

across multiple sites to estimate detection probability and

improve accuracy (Mackenzie et al., 2002, 2017). One of

the key benefits of this framework is the potential to

model each probability as a function of covariates that

may be site-specific (e.g. habitat type, patch size and

forage quality) and/or survey-specific (e.g. temperature

and moon phase, Brubaker et al., 2014, Wevers

et al., 2021). Incorporating covariates will generally

improve the biological realism of estimates, as assuming

equal occupancy and detectability across sites and survey

days is unlikely to be reasonable (Lahoz-Monfort

et al., 2014; MacKenzie et al., 2017). Furthermore, quanti-

fying how occupancy probability and detectability vary

with environmental characteristics is often the primary

research focus. For example, predator–prey interactions

(Widodo et al., 2022), habitat use (Lamichhane

et al., 2020) and population viability (Farr et al., 2022)

have been explored using occupancy–covariate relation-

ships. These studies support conservation practitioners in

directing their efforts towards landscape features crucial

to the focal species (Broekhuis et al., 2022; Calderón

et al., 2022).

Evaluating survey design by assessing the reliability and

inference of occupancy estimates is essential to inform

decisions on the number of cameras, duration and loca-

tion of deployment. Increasing survey effort (i.e. camera

sites and survey days) generally increases the accuracy

and precision (i.e. reduces error) of occupancy estimates.

However, optimal survey strategies may depend on char-

acteristics of the target species. For example, error is most

efficiently reduced for rare species that are easy to detect

by increasing the number of camera sites, while for spe-

cies that are difficult to detect but spatially common,

error can be minimized more effectively by increasing

survey days (Chatterjee et al., 2021; Kays et al., 2020;

Mackenzie & Royle, 2005; Shannon et al., 2014).

Camera-trap surveys are often constrained by logistical

issues, including equipment costs, camera maintenance,

site access and data storage. Studies on survey optimiza-

tion, therefore, provide useful guidance on the relative

costs and benefits of alternative camera deployment strat-

egies (Gálvez et al., 2016; Kays et al., 2020; Shannon

et al., 2014).

To date, these assessments have assumed that occu-

pancy and detection remain constant across sites and sur-

vey days (i.e. no covariates were used in the analyses),

which is seldom the case in real-world scenarios (Mac-

kenzie et al., 2002). Consequently, the extent to which

covariates affect trade-offs in effort allocation between

sites and surveys remains uncertain. Optimal survey

design may depend on both the magnitude of covariate

effects and whether they are site- or survey-specific, as

these factors determine the range and quantity of covari-

ate data available for modelling. Indeed, forecasting the

strength and direction of covariate relationships with

occupancy and detection can play an important role in

designing efficient surveys. However, in many cases, there

is limited a priori knowledge of whether a given covariate

2 ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Covariates influence camera-trap survey design O. Barton et al.

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.70031 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



primarily affects occupancy and/or detection. Therefore,

investigating the relative costs of misidentifying covariate

relationships in terms of estimation bias and wasted sur-

vey effort can provide useful information for guiding

camera-trap survey design.

Assessing alternative survey designs with empirical data

is challenging because differences in a wide range of con-

ditions (e.g. habitat, weather and elevation) may exist

between study sites, and their effects are likely to vary

across taxa (Chatterjee et al., 2021; Kays et al., 2020; Mac-

kenzie & Royle, 2005). Computer simulations are well

suited to explore the effects of covariates on survey design

trade-offs, as covariate properties (e.g. spatial extent and

strength of effects) can be manipulated to facilitate the

investigation (Lotterhos et al., 2022). Although simulation

tools are available to explore study design (GENPRES:

Bailey et al., 2007; SODA: Guillera-Arroita et al., 2010),

the functionality of these programs is currently limited to

comparing occupancy between predefined groups of sites

(i.e. investigating the effect of a categorical covariate

only).

This study aimed to investigate how covariates influ-

ence both accuracy and precision (i.e. error) of occupancy

models in relation to survey effort. Using simulated detec-

tion histories of a virtual species, we assessed the effects

of site- and survey-specific covariates on occupancy and

detectability. We evaluated how survey design factors

(camera number, deployment duration, positioning and

covariate effect magnitude) impact parameter error, both

with and without covariate inclusion in occupancy

models. We hypothesised that optimal survey design

would depend on the type (i.e. site- or survey-specific)

and magnitude of covariate effects, as well as whether

they primarily influenced occupancy or detectability.

Additionally, we expected that, for the same level of sur-

vey effort, models correctly incorporating influential cov-

ariates would yield lower error than those omitting them.

Based on our findings, we offer broad recommendations

for designing camera-trap surveys to estimate species

occupancy when covariate effects are expected and high-

light the potential costs of suboptimal designs when such

effects are unknown.

Materials and Methods

The methods are an extension of the simulation approach

used by Shannon et al. (2014). Simulations were parame-

terised to investigate 2700 different scenarios that varied

by number of cameras (sites: N= 10, 30, 50, 70, 90),

number of survey days (occasions: S= 20, 40, 60, 80,

100), proportion of cameras positioned in habitat patches

(Prop= 0, 0.2, 0.4, 0.6, 0.8, 1) and type of covariate

affecting detectability (EffectType(p)= site- or survey-

specific) as well as the magnitude of covariate effects on

occupancy (Magnitude(ψ )= none, weak or strong) and

detectability (Magnitude(p)= none, weak or strong).

The site-specific covariate was simulated to mimic a

patchily distributed resource (e.g. woodland, water source

and wetland) surrounded by a matrix of alternative,

lower-quality habitat land cover types. Prop represents the

proportion of camera sites (N ) located within these habi-

tat patches and reflects real-world scenarios, where

observed heterogeneity in a covariate may arise from vari-

ation in its spatial extent, distribution or the camera

deployment strategy used (Fig. 1). For example, uniform

sampling is often used when the objective is to estimate

habitat preferences (e.g. Estevo et al., 2017). Alternatively,

non-uniform sampling may be used when assessing the

relationship between occupancy and a characteristic of

the habitat patch (e.g. quality, salinity and plant species

richness) is the aim of the study (e.g. Hansen

Figure 1. Camera data collection scenarios are represented by

varying the proportion of camera sites (N ) located in patches of a

given habitat type (Prop) and quality. Scenario A: the habitat is either

not present or deliberately not sampled. Scenario B: 50% of cameras

are in habitat patches, either by design or distribution of the habitat.

Scenario C: 100% of cameras are in patches of the habitat type,

either by design or because there is contiguous habitat cover.
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et al., 2020), or there is a need to stratify sampling across

habitat types (Bailey et al., 2007; Kays et al., 2020; Mac-

Kenzie et al., 2017). The survey-specific covariate was

simulated to represent an environmental or observational

factor that varies across survey occasions but not camera

sites, such as temperature, Julian day or moon phase.

Simulated detection histories

A total of 500 sets of detection histories were created for

each combination of N (5 levels), S (5 levels), Prop (6

levels), EffectType(p) (2 levels), Magnitude(ψ ) (3 levels)

and Magnitude(p) (3 levels, 5�5�6�2�3�3= 2700 in

total). Detection histories consisted of N � S events,

where each ith camera site was occupied or not (yi) from

i= 1, . . ., N, following a Bernoulli process with probabil-

ity ψ i. At occupied sites, it was then determined if the

species was detected or not for each occasion from j= 1,

. . ., S following a Bernoulli process with probability pi or

pj, when EffectType(p) was site- or survey-specific, respec-

tively (Shannon et al., 2014).

Occupancy (ψ) was modelled as a function of a site-

specific covariate, while detection probability (p) was

modelled as a function of either a site- or survey-specific

covariate, depending on EffectType(p) (Mackenzie & Bai-

ley, 2004). In each simulation, sites were considered to be

in patches of the focal habitat (n = N� Prop) or the sur-

rounding matrix (n=N� (1-Prop)). For each camera site

in the habitat patches, a random value between 0 and 10

was generated from a uniform distribution to represent a

characteristic of the patch (e.g. habitat quality). Camera

sites in the matrix were assigned habitat quality values of

0. The probability ψ was calculated using the logistic

model (Equation 1) with intercept and slope terms shown

in Table 1 (Mackenzie et al., 2002):

logit ψið Þ= Interceptþ Slope� Covariateið Þ (1)

where Covariate is the habitat quality value (0–10) gener-
ated from the uniform distribution. The probability ψ
was constant (0.4) at matrix sites and increased with

increasing quality of the habitat patch for the camera site

it contains, representing a mechanism whereby a species

uses a range of habitats but prefers higher quality patches

of a given type (Fig. 2). The same equation structure was

used for modelling detection probability (Equation 1).

For scenarios where EffectType(p) was site-specific, detect-

ability p was modelled as a function of habitat type and

was assumed to be lower in the matrix (p= 0.05, Table 1),

representing a scenario where the species is more detect-

able in habitat patches (p= 0.3, ‘patch sites’ hereafter,

Table 1), possibly because activity is higher, or game trails

are easier to identify. For scenarios where EffectType(p)
was survey-specific, covariate values for p were simulated

using a similar procedure as for ψ . A random value

between 0 and 10 was generated for each survey day from

a uniform distribution to represent a dynamic environ-

mental variable (e.g. temperature) and a survey-specific p

was estimated using the logistic model (Equation 1,

Table 1, Fig. 2).

The intercept and slope terms were calculated to repre-

sent a species with low-to-moderate occupancy and low

detectability when covariate values were zero (e.g. in

matrix sites or temperature of 0). Occupancy and detect-

ability increased to moderate or high levels depending on

the strength of the covariate effects, with weak effects

leading to moderate increases and strong effects resulting

in high occupancy and detectability. The parameter values

used to create detection histories of the virtual species are

representative of the range of values observed in empirical

studies of terrestrial mammals (Chatterjee et al., 2021;

Kays et al., 2020; Shannon et al., 2014).

Occupancy modelling and error estimation

Simulated detection histories were analysed using

single-season single-species occupancy models (Mackenzie

et al., 2002) in the ‘RPresence’ package, which imple-

ments the statistical models available in the software

program PRESENCE (www.mbrpwrc.usgs.gov/software/

presence.shtml) in R (R Core Development Team, 2024).

Table 1. Intercept and slope terms used to model occupancy (ψ ) and detection probabilities (p) as a function of a randomly generated site- or

survey-specific covariate (Equation 1).

Parameter p Effect type Effect magnitude Intercept Slope

Range of values

Matrix sites Patch sites

ψ Weak �0.41 0.13 0.4 0.4–0.7
ψ Strong �0.41 0.26 0.4 0.4–0.99
p Site-specific Weak �2.94 0.75 0.05 0.1

p Site-specific Strong �2.94 2.1 0.05 0.3

p Survey-specific Weak �2.94 0.07 0.05–0.1 0.05–0.1
p Survey-specific Strong �2.94 0.5 0.05–0.3 0.05–0.3
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It was assumed (i) sites were closed to changes in occu-

pancy, (ii) detection of species and detection histories at

each site were independent and (iii) species were correctly

identified (i.e. no false positives, MacKenzie et al., 2017).

For each scenario (i.e. combination of N, S, Prop,

EffectType(p), Magnitude(ψ ) and Magnitude(p)) from k= 1,

. . ., 2700, we fitted four models: (1) ‘Constant’: ψ(.)p(.),
where ψ and p were held constant, (2) ‘Occupancy-only’:

ψ(habitat quality)p(.), where ψ varied with habitat

quality while p was held constant, (3) ‘Detection-only’:

ψ(.)p(temperature/habitat type) where ψ was held con-

stant and p varied with temperature or habitat type and

(4) an ‘Occupancy and Detection’ model: ψ(habitat
quality)p(temperature/habitat type), where both parame-

ters varied in relation to covariates. Error was calculated

using root mean squared error (RMSE), which is a

measure of both accuracy and precision:

RMSEk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ cψð i�ψ i

h �2

�
r

(2)

where k is the scenario and bψ and ψ are the

model-estimated and true values for occupancy at site i,

respectively. To assess the effect of the covariate on the

optimal survey design, three different RMSE target values

(0.15, 0.10 and 0.075) were selected to represent differing

levels of error. Consistent with the analyses conducted by

Shannon et al. (2014), the number of occasions (S) and

number of cameras (N) were weighted equally. The opti-

mal survey design was estimated as the minimum survey

effort (N � S) required to estimate occupancy to a

desired level of error. Finally, to evaluate the relative pen-

alty for failing to account for covariate effects, we calcu-

lated the difference in error between optimal models (e.g.

an Occupancy-only model applied when the covariate

affected occupancy and not detection) and sub-optimal

models that omitted one or more influential covariates

(ΔRMSE= RMSEOptimal–RMSESub-optimal). The ΔRMSE

was calculated in relation to total survey effort and effect

magnitude, where negative values indicate worse model

performance (i.e. an increase in error) due to covariate

omission.

It should be noted that only outputs from valid models

were included in the results. For a model to be valid it

had to meet the following criteria: (1) converge to a min-

imum of three significant digits (provided in the RPre-

sence model output), (2) no variance–covariance (VC)

warnings, (3) naive occupancy [ 0 and\1 and (4) β
estimates \= 6.906755 and [= �6.906755, which rep-

resents a maximum of a 0.999 change in the estimate of a

parameter (ψ or p) for a 1 standard deviation unit change

in the covariate (applies to covariate models only,

Tables S1 and S2).

Results

Increasing the number of cameras consistently reduced

the root mean squared error (RMSE) of occupancy (ψ)
estimates across all simulated scenarios (Fig. 3). A key

finding, however, was that increasing the number of sur-

vey days only reduced error when occupancy was influ-

enced by a covariate and had minimal impact when

covariates affected detectability (Table 2, Fig. 3). Greater

total survey effort (sites and surveys) was needed when

covariate effects on occupancy were weak, and a larger

number of sites was required when detectability was

weakly influenced by a survey-specific covariate. In con-

trast, effect magnitude had minimal influence when the

detectability covariate was site-specific (Table 2).

Omitting the occupancy covariate substantially

decreased model performance (i.e. greater error),

Figure 2. Relationship between (A) occupancy (ψ ) and habitat quality and (B) detectability (p, when EffectType(p)= survey-specific) and

temperature used to simulate detection histories of a virtual species. Habitat quality and temperature values were both randomly generated from

a uniform distribution. The dashed line indicates ψ for matrix sites (0.4), which were assigned habitat values of 0.
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particularly when the effect magnitude was strong, and an

intermediate proportion of cameras were in habitat

patches (Figs 4 and 5). Furthermore, in scenarios where

both occupancy and detectability were influenced by

covariates, models that did not account for occupancy

effects achieved none of the pre-defined error thresholds,

even with the maximum survey effort (9000 camera-days,

Table 3). Conversely, omitting the detectability covariate

Figure 3. Root mean squared error (RMSE) for estimates of occupancy (ψ ) in relation to survey effort (number of cameras and number of days of

deployment) and covariate effects that varied by the parameter affected (occupancy or detectability, p), as well as effect magnitude and the type

of covariate affecting p (site- or survey-specific). Results shown are for scenarios where an intermediate proportion of camera sites were in habitat

patches (Prop= 0.6).

Table 2. Optimal survey design (number of cameras N× number of survey days S) for estimating occupancy with a minimum level of precision

(root mean squared error, RMSE) of 0.15, 0.10 and 0.075 under different scenarios of covariate effects on either occupancy (ψ ) or detectability

(p).

Parameter influenced by the covariate Effect magnitude

RMSE= 0. 15 RMSE= 0.1 RMSE= 0.075

N � S Total N � S Total N � S Total

None (Constant model) — 30 × 40 1200 30 × 60 1800 70 � 40 2800

ψ Weak 50 × 40 2000 50 × 80 4000 90 � 100 9000

Strong 50 × 20 1000 70 × 40 2800 90 � 60 5400

p (Site-specific) Weak 30 × 20 600 50 × 20 1000 90 � 20 1800

Strong 30 × 20 600 50 × 20 1000 70 � 20 1400

p (Survey-specific) Weak 50 × 20 1000 50 × 20 1000 90 � 20 1800

Strong 30 × 20 600 30 × 20 600 50 � 20 1000

Note: We assume equal costs of cameras versus survey days (as per Shannon et al., 2014). Results are shown for models that correctly incorpo-

rated covariates when necessary and for scenarios where an intermediate proportion of camera sites were in habitat patches (Prop= 0.6).
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had little impact on model performance, regardless of

effect magnitude or whether the covariate was site- or

survey-specific (Fig. 4, Table 3). In scenarios where

occupancy covariates were absent or weakly influential,

omitting covariates occasionally improved performance at

lower levels of survey effort, most likely because of uncer-

tainty in estimating effects (i.e. regression coefficients,

Fig. S1).

Figure 4. Difference in root mean squared error for estimates of occupancy (ψ ) between optimal models and sub-optimal models that omitted

one or more influential covariates (ΔRMSE= RMSEOptimal–RMSESub-optimal) in relation to total survey effort (Camera-days: number of cameras �
number of days of deployment) and effect magnitude. Negative values below the dashed horizontal line indicate worse performance (i.e. more

error associated with sub-optimal models). Results shown are for scenarios where an intermediate proportion of camera sites were in habitat

patches (Prop= 0.6) and EffectType(p)= site-specific; for survey-specific results see Figure S2.

ª 2025 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7

O. Barton et al. Covariates influence camera-trap survey design

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.70031 by C

olorado State U
niversity, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 5. Difference in root mean squared error for estimates of occupancy (ψ ) between optimal ‘Occupancy-only’ models and ‘Constant’ models

that omitted the occupancy covariate (ΔRMSE= RMSEOccupancy-only–RMSEconstant) in relation to survey effort (number of cameras and number of

days of deployment), effect magnitude and the proportion of camera sites in habitat patches. Negative values below the dashed horizontal line

indicate worse performance (i.e. more error associated with the Constant model).

Table 3. Impact of covariate omission when occupancy (ψ ) and detectability (p) are both strongly influenced by covariates in terms of optimal sur-

vey design (number of cameras N x number of survey days S) for estimating occupancy with a minimum level of precision (root mean squared

error, RMSE) of 0.15, 0.10 and 0.075.

Minimum precision threshold (RMSE)

Covariates omitted

ψ and p ψ p None (Correct)

N � S Total N � S Total N � S Total N � S Total

p (Site-specific)

0.15 F F F F 30 × 20 1000 30 � 20 600

0.1 F F F F 50 × 40 2800 70 � 20 1400

0.075 F F F F 90 × 40 5400 90 � 40 3600

p (Survey-specific)

0.15 F F F F 30 × 20 600 30 � 20 600

0.1 F F F F 50 × 20 1000 50 � 20 1000

0.075 F F F F 90 × 20 1800 90 � 20 1800

Note: We assume equal costs of cameras versus survey days (as per Shannon et al., 2014). Results are shown for scenarios where an intermediate

proportion of camera sites were in habitat patches (Prop= 0.6). ‘F’ indicates failure to achieve the precision threshold with the maximum possible

survey effort (9000 camera-days).
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Discussion

We used a simulation approach to assess the effects of

covariates on the precision and accuracy (i.e. error) of

occupancy models in relation to camera-trap survey

effort. The results showed that increasing the number of

cameras consistently decreased error. However, the rela-

tive benefit of longer deployments and the total survey

effort required to achieve precision targets depended on

which model parameter (occupancy or detectability) was

influenced by the covariate and the magnitude of the

effects. Furthermore, we found that increased survey

effort only reduced error when the effects of

occupancy-related covariates were properly accounted for

in the model. In contrast, failing to include covariates

influencing detectability had minimal impact. Our find-

ings highlight the importance of prioritising biologically

relevant covariates during survey design to ensure efficient

monitoring and precise occupancy estimation.

The benefits of maximising the number of cameras and

accounting for covariate effects on occupancy were clear

across all survey design scenarios. Covariates are used to

satisfy the assumption that heterogeneity in occupancy

and detection probabilities across sites and surveys is

accounted for in the modelling of each parameter (Mac-

kenzie et al., 2002, 2017). In scenarios where a spatial

covariate (e.g. habitat type or quality) is the source of

heterogeneity, deploying more cameras expands the range

and coverage of data available for modelling. This, in

turn, improves the estimation of effects and the efficacy

of models to discriminate between competing hypotheses

(e.g. to assess habitat preferences, Bailey et al., 2007;

Guillera-Arroita & Lahoz-Monfort, 2012; MacKenzie

et al., 2017). Importantly, our results suggest that unless

site-level heterogeneity is appropriately quantified and

modelled using covariates, increasing survey effort is

unlikely to provide any benefit for model performance.

Identifying and accounting for potentially influential cov-

ariates at the earliest stages of study design is therefore an

efficient way to improve estimation precision and prevent

the wasteful use of additional cameras or extended

deployments.

In real-world scenarios, occupancy and detectability

can be influenced by a variety of spatially variable factors,

the effects of which may be unknown. Furthermore, envi-

ronmental features may vary at multiple hierarchical

levels, as exemplified by the habitat variable used in our

study, which varied by type (e.g. forest and grassland)

and quality (low-high). Our findings show that, while

standardising site selection (e.g. by selecting all sites of

the same habitat type, represented by Prop= 1 in our

simulations) can eliminate one source of spatial heteroge-

neity, assuming constant occupancy may be inappropriate

due to the unmodelled effects of additional factors. This

underscores the need to consider the study’s primary

objectives when selecting sites relative to covariate gradi-

ents. Simple random sampling is well-suited to identifying

habitat preferences across broad habitat types (e.g. Donini

et al., 2025; Nagy-Reis et al., 2017). However, for habitat

specialist species—whose preferences are known

a-priori—targeting these habitats and distributing cameras

evenly across the value-ranges of secondary factors such

as quality or forage availability (e.g. Bitani et al., 2023;

Bowler et al., 2017) may provide more useful data. Com-

bining these strategies can be useful for surveying rare or

understudied species, where limited prior knowledge of

habitat use is available to inform site selection (e.g.

Khwaja et al., 2019). Initially, cameras can be deployed in

a uniform grid followed by redeployment to preferred

habitats (e.g. van Berkel et al., 2022).

When the source of heterogeneity is a temporally

dynamic factor (e.g. moon phase or temperature), it may

seem intuitive that increasing deployment duration would

benefit model performance, since longer surveys allow for

the observation of a wider range of covariate values to

estimate effects. However, our results do not support this

hypothesis. Increasing deployment length only reduced

error when detectability was held constant (i.e. not influ-

enced by the covariate). Longer camera deployments help

distinguish whether non-detection at a given site is due

to true absence (i.e. the site is unoccupied) or low detect-

ability by increasing the cumulative detection probability

(i.e. the probability of detecting the species at least once

over the entire survey period, p�, for the equation for-

mula see Fig. S3 and Shannon et al., 2014). As p�

approaches a value of 1, detectability ceases to influence

the occupancy estimate and additional surveys become

redundant. In the absence of covariate effects, the baseline

detection probability (p = 0.05) used in our study

resulted in a p� that ranged from 0.65 for the shortest

deployment (S = 20 days), to 0.98 for deployments of

80 days or longer. The simulated covariate increased the

average detection probability (i.e. mean p across sites and

surveys) from the 0.05 baseline to a minimum of 0.08

and 0.18 for weak and strong effects, respectively

(Fig. S3). These values for p correspond to p� estimates of

0.81 and 0.98 for the shortest deployment, which only

marginally increased with additional survey days

(Fig. S3). This likely explains why extending deployment

duration had little effect on model performance when

detectability was influenced by covariates, and why

excluding these covariates had substantially less of an

impact than omitting those affecting occupancy.

In situations where baseline detectability is very low

(i.e. p \ 0.05), detectability is strongly reduced by envi-

ronmental factors, or deployments are less than 20 days,
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deployment duration—and the impact of omitting detect-

ability covariates—may exert a stronger influence on esti-

mation error (Wright et al., 2019). For example,

occupancy studies of herpetofauna typically rely on

non-camera-based survey methods that are often logisti-

cally limited to very low numbers (\10) of repetitions.

In these circumstances, incorporating covariates for

detectability may be equally as important as accounting

for factors influencing occupancy (Baumgardt et al., 2021;

Oropeza-Sánchez et al., 2021). Nevertheless, a 20-day

deployment reflects the shorter end of durations typically

used in camera-based occupancy studies (Kays

et al., 2020). Furthermore, the values for baseline detect-

ability and effect magnitude in our simulations are repre-

sentative of those observed in empirical studies

(Chatterjee et al., 2021; Kays et al., 2020; Shannon

et al., 2014) and the findings should therefore be applica-

ble to a wide range of taxa and situations where

camera-traps are used to study patterns of site occupancy.

For convenience, we parameterised our simulations so

that detectability was entirely site- or survey-specific.

However, there are many real-world cases where factors

influencing detectability vary both spatially and tempo-

rally. For example, temperature may fluctuate day-to-day

but also across sites at different elevations. In such condi-

tions, longer-duration deployments are likely to be benefi-

cial due to the additional spatial heterogeneity in

detectability. This could be explored by adapting our code

(Data S1 and S2) to simulate a covariate that is both site-

and survey-specific. Our analyses could also be expanded

to explore how seasonal variation in occupancy/

detectability influences survey optimization. For example,

if a species is more active in the summer than in the win-

ter because environmental conditions are more favour-

able, detection probability may be higher during the

summer, meaning fewer repeated surveys would be

required to achieve the same level of estimation accura-

cy/precision. Furthermore, camera-traps are often used to

monitor multiple species, each of which may respond dif-

ferently to environmental factors. Using multi-species

and/or multi-season models (see MacKenzie et al., 2017)

within our simulation framework may be useful to evalu-

ate survey optimisation under these more complex

conditions.

As with the design of any ecological study, the potential

benefits of a given survey strategy must be weighed

against the practical costs of implementation. When cal-

culating the minimum survey effort required to achieve

error below a target value, the number of cameras and

number of survey days were weighted equally in the pre-

sent study. In real-world scenarios, each survey compo-

nent may have different human and financial costs that

need to be considered to find an efficient solution within

the logistical constraints of a study. There are also costs

associated with collecting covariate data, which can vary

greatly depending on the type of data required, as well as

the ecological context and scale of the study.

Remotely-sensed environmental data have been collected

for many countries worldwide and are free to access from

sources such as the European Space Agency

(https://worldcover2020.esa.int/) and Copernicus Global

Land Service (https://land.copernicus.eu/global/products/).

However, data on finer-scale (e.g. habitat structure) or

dynamic (e.g. prey availability) covariates may be more

challenging and expensive to collect. Real-world costs

have been evaluated in previous assessments of

camera-trap surveys (Gálvez et al., 2016; Guillera-Arroita

et al., 2010; Shannon et al., 2014), which could be

expanded to include the collection of covariate data.

Conclusions

Our study demonstrates the fundamental importance of

considering covariate effects on occupancy and detection

probabilities in camera-trap survey design. While the

results show that extended camera deployments may par-

tially compensate for unmodelled detectability covariates,

the impact of neglecting effects on occupancy is unlikely

to be mitigated by any level of increased survey effort.

Therefore, we recommend that researchers clearly define

study objectives and prioritise the identification of key

covariates early in the design process. When spatial het-

erogeneity is a concern, increasing camera coverage across

covariate gradients is likely to enhance model perfor-

mance. Furthermore, characteristics (e.g. quality) of an

apparently homogenous covariate (e.g. habitat type) may

vary spatially and should be accounted for where possible.

In contrast, temporal covariates may not justify longer-

duration deployments unless the species is especially rare

and/or the effects on detectability are negative.

Although simulation studies provide useful theoretical

guidance, it will be important to validate our results with

empirical data. Modelling covariates adds a dimension of

complexity that makes validation with empirical data very

challenging as a wide range of factors may influence the

observed relationship between covariates and occupancy/

detectability, including spatial and temporal scale,

ecological context, community composition and species

abundance (Heino & Tolonen, 2018; Hofmeester

et al., 2019; Morán-López et al., 2022; Steenweg

et al., 2018). Initiatives such as Wildlife Insights powered

by Google (Thau et al., 2019), Snapshot (Europe, USA,

Japan and Brazil, https://snapshot-global.org/) and the

eMammal repository (McShea et al., 2016) have collated

camera-trap data for a wide range of species from around

the world. These large, centralised datasets may facilitate
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appropriately detailed analyses, from which the results

may be transposed to a range of species, ecological con-

texts and survey scenarios.
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Table S1. Mean proportion of invalid models (n

invalid/number of detection histories (500)) across all sce-

narios of number of cameras, number of days, Prop,

EffectType(p), Magnitude(psi) and Magnitude(p) for optimal

models, where covariates were incorporated correctly (e.g.

an Occupancy-only model applied when the covariate

influenced occupancy ψ and not detectability p). For a

model to be valid it had to meet the following criteria:

(1) converge to a minimum of 3 significant digits, (2) no

variance–covariance (VC) warnings, (3) naive occupancy

[ 0 and \1 and (4) coefficient estimates \= 6.906755

and [= �6.906755, which represents a maximum of a

0.999 change in the estimate of a parameter (ψ or p) for

a 1 standard deviation unit change in the covariate.

Table S2. Mean proportion of invalid models (n

invalid/number of detection histories (500) across all sce-

narios of number of cameras, number of days, Prop,

EffectType(p), Magnitude(psi) and Magnitude(p)) for sub-

optimal models, where one or more influential covariates

were omitted. For a model to be valid it had to meet the

following criteria: (1) converge to a minimum of 3 signif-

icant digits, (2) no variance–covariance (VC) warnings,

(3) naive occupancy [ 0 and \1 and (4) coefficient
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estimates \= 6.906755 and [= �6.906755, which rep-

resents a maximum of a 0.999 change in the estimate of a

parameter (ψ or p) for a 1 standard deviation unit change

in the covariate.

Figure S1. Mean standard error of regression coefficients

estimates (β) describing the relationship between a

randomly-generated site-specific covariate (habitat qual-

ity) and occupancy (ψ) from optimal ‘Occupancy-only’

models (i.e. occupancy covariates were used and detect-

ability was constant) in relation to survey effort (number

of cameras and number of days of deployment), effect

magnitude and the proportion of camera sites in habitat

patches. Means were estimated from 500 replicate models.

Figure S2. Difference in root mean squared error for esti-

mates of occupancy (ψ) between correctly-specified

models and alternative models that omitted one or more

influential covariates (ΔRMSE= RMSEcorrect –
RMSEalternative) in relation to total survey effort (Camera-

days: number of cameras � number of days of

deployment) and effect magnitude. Negative values below

the dashed horizontal line indicate worse performance

(i.e. more error associated with alternative models).

Results shown are for scenarios where an intermediate

proportion of camera sites were in habitat patches

(Prop= 0.6) and p.EffectType= survey-specific.

Figure S3. Cumulative detection probability

p� = 1� 1�pð ÞS
�

, where p is detection probability and S is

the number of survey days, Shannon et al. (2014) in rela-

tion to the number of survey days used for camera

deployment, type of covariate affecting detectability

(EffectType(p)) and the magnitude of effects

(Magnitude(p)). The solid black line represents the

p= 0:05 baseline detection probability. Results shown are

for scenarios where an intermediate proportion of camera

sites were in habitat patches (Prop= 0.6).

Data S1.

Data S2.
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